Search results for "Selective inhibition"
showing 3 items of 3 documents
How To Design Selective Ligands for Highly Conserved Binding Sites: A Case Study Using N-Myristoyltransferases as a Model System
2019
A model system of two related enzymes with conserved binding sites, namely N-myristoyltransferase from two different organisms, was studied to decipher the driving forces that lead to selective inhibition in such cases. Using a combination of computational and experimental tools, two different selectivity-determining features were identified. For some ligands, a change in side-chain flexibility appears to be responsible for selective inhibition. Remarkably, this was observed for residues orienting their side chains away from the ligands. For other ligands, selectivity is caused by interfering with a water molecule that binds more strongly to the off-target than to the target. On the basis o…
Prospective computational design and in vitro bio-analytical tests of new chemical entities as potential selective CYP17A1 lyase inhibitors
2019
[EN] The development and advancement of prostate cancer (PCa) into stage 4, where it metastasize, is a major problem mostly in elder males. The growth of PCa cells is stirred up by androgens and androgen receptor (AR). Therefore, therapeutic strategies such as blocking androgens synthesis and inhibiting AR binding have been explored in recent years. However, recently approved drugs (or in clinical phase) failed in improving the expected survival rates for this metastatic-castration resistant prostate cancer (mCRPC) patients. The selective CYP17A1 inhibition of 17,20-lyase route has emerged as a novel strategy. Such inhibition blocks the production of androgens everywhere they are found in t…
Selective Inhibition of STAT3 with Respect to STAT1: Insights from Molecular Dynamics and Ensemble Docking Simulations
2016
STAT3 protein, which is known to be involved in cancer development, is a promising target for anticancer therapy. Successful inhibitors of STAT3 should not affect an activity of closely related protein STAT1, which makes their development challenging. The mechanisms of selectivity of several existing STAT3 inhibitors are not clear. In this work, we studied molecular mechanisms of selectivity of 13 experimentally tested STAT3 inhibitors by means of extensive molecular dynamics and ensemble docking simulations. It is shown that all studied inhibitors bind to the large part of the protein surface in an unspecific statistical manner. The binding to the dimerization interface of the SH2 domain, …